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J.  Phys.: Condens. Matter l(1989) 10089-10105. Printed in the UK 

Elastic interaction of high-spin and low-spin complex 
molecules in spin-crossover compounds: I1 

H Spiering and N Willenbacher 
Institut fur Anorganische und Analytishe Chemie der Johannes Gutenberg Universitat, 
6500 Mainz, Federal Republic of Germany 

Received 30 January 1989 

Abstract. Several transition-metal compounds show a transition from the low-spin to the 
high-spin electronic state with increasing temperature. The cooperative nature of the tran- 
sition in the solid state is attributed to the elastic interaction between the spin-changing ions 
as a result of the deformation of the crystal accompanying the transition. In a previous work 
the long range part of the elastic interaction due to the image pressure on a spherical surface 
was treated. In this work the elastic energy originating from the direct elastic interaction 
between the high-spin and low-spin complex molecules randomly distributed over the lattice 
sites is computed. The crystal is considered as an isotropic homogeneous elastic medium 
with the spin-changing ions as point defects described by elastic dipole tensors PHS and PLs, 
respectively. The interaction depends on the components of the tensor difference PHL = 
PHs - PLS which are unequivocally~determined based on the x-ray data of the compounds 
[Fe(2-pic),] C12 Sol (2-pic = 2-aminomethylpyridine, Sol = MeOH, EtOH). Collecting 
both contributions (the image and the direct part) the value of the interaction constant r can 
be explained in a consistent way for both compounds. 

1. Introduction 

The phenomenon of thermally induced high spin (HS) low e spin (LS) transition in 
transitbn-metal compounds, particularly iron (11) complexes, isstill the object of various 
experimental and theoretical investigations. The transition is usually described by the 
fraction y of molecules in the HS state. The fraction y is a function of temperature T.  A 
large variety of transition curves y( T )  have been observed (Ewald et a1 1969, Haddad et 
af 1981, Giitlich 1981,1984, Konig 1987). The y( T )  curves measured in crystalline solids 
deviate from a Boltzmann population of the HS and LS energy levels of the spin-changing 
ions. The intensive studies on mixed-crystal systems, especially on the compounds 
[Fe,M1-,(2-pic),]X,.S~ol (M = CO, Zn; X = C1, Br; Sol = MeOH, EtOH) (Adler etaf 
1987, Sanner et a1 1984, Koppen etaf 1982) and the corresponding deuterated compounds 
(Jakobi etal1988, Meissner 1984) have been very successful in discovering the interaction 
mechanism responsible for t h e m  2 LS transition. In these systems the distances between 
the interacting spin-changing ions have been varied by replacing part of them by other 
transition-metal ions M without changing the structure of the crystal. 

The main features of the spin-transition behaviour in solid compounds are well 
described by a Gibbs free energy G(y, p ,  T )  which is a sum of two parts, the free energy 
G,(y,p,  T )  of the isolated non-interacting ions (x+ 0) and an interaction part GI,, 
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which has been parametrised as 

In order to relate the parameters A and r to the crystal properties, Spiering et a1 
(1982) and Willenbacher and Spiering (1988) in more detail have discussed the elastic 
interaction between the HS and the LS ions via the image pressure (Eshelby 1954,1956). 
The starting point of all considerations is the observed volume change and deformation 
of the lattice accompanying the transition of the ions from the LS to the HS state. 
Microscopically, an increase of the Fe-N bond lengths of about 10% is observed by x- 
ray studies (Mikami 1980, Wiehl 1986) on going from the LS state to the HS state. This 
situation has been approximated by point defects representing the spin-changing ions 
which are embedded in an isotropic homogeneous elastic medium characterised by 
elastic moduli K and o representing the lattice. 

In our previous work (Willenbacher et a1 1988) we have treated the interaction of 
three tyes of point defects with dipole tensors P', PHS and PLs randomly distributed over 
a sphere. All complexes (HS, LS and other metal complexes M) are taken as defects even 
in the case of a lattice of only one species. The shape of a fictitious complex with vanishing 
tensor-P leading to the minimum elastic energy of the lattice is introduced to simplify 
the description of the system. The measured quantities as the deformtion tensor E, of 
the crystal and the interaction constant depend on differences of the tensors P" so that 
the fictitious reference system drops out of the relevant equations. The deformation 
tensor differences E,"" = - E , " ~  = E," - &Is and &YH = E ?  - &IH are 
obtained from x-ray measurements (Wiehl et a1 1986). The relation between the lattice 
deformation tensor E f and the dipole tensor P" of Ndefects homogeneously distributed 
over a crystal with volume V, is given by 

where E ~ , ,  = E,,,, + + eC, zz  (the superscript v is dropped) is the trace of the Cartesian 
tensor E,& i ,  k = x ,  y .  z and E , , ~  are the spherical components of the traceless part EC,d  

GI", = YA(X) - r 2 W .  (1.1) 

E ; , ,  = 3NV,1(3A + 2p)-'P," = NV,1(2p)-'Ph (1.2) 

E c , 0  = ( 1 / m 2 & c , z z  - & c , n  - EC,J 

EC,?2 = 2(Ec,xx - Ec,yy)  5 iEc,,y. 

EC,?l  = T(&C.,rZ * i E c , y z )  
(1.3) 

The Lam6 coefficients A and ,u are related to the bulk modulus K and Poisson ratio o 
by K = i(3A + 2p) and o = &t/(A + p). The strength of an elastic dipole is therefore 
characterised by six parameters: P, and P, ( M  = -2, -1, 0, 1 ,2) .  The average tensor 
of a concentration x of spin-changing ions, a fraction y of which are in the HS state and 
a concentration (1 - x )  of metal ions M is given by 

P ,  = xyPZS + x(l - y)PL,S + (1 - X)PY a =  S ,  M .  (1.4) 
Taking into account only the image pressure of the spin-changing ions the interaction 
constant T ( x )  and the parameter A ( x )  of the interaction part G,,,, equation (1.1), of the 
Gibbs free energy G ( y , p ,  T )  could be expressed by the tensor components and 
E , Y , ~  ( v  = HL, ML). The parameters are proportional to the concentration x of the spin 
changing ions so that we could write (subscript im stands for image pressure) T(x) = 
x r , ,  and A ( x )  = xAlm with 

r i m / K =  i V c ( ~ 0  - ~ ) Y ~ ' [ ( E E ) ~  +  YO + 1 ) ( ~ ? t i ~ ? i ) s I  ( 1 . 5 ~ )  
H L E  ML 

A ~ r n / K  v c ( Y O  - l>ri'[E?f-E?," + 6(2y0 + l ) ( & c , d  c , d ) s l  (1.5b) 

Vc = V,/N is the volume per complex molecule. = C, E ~ E ;  denotes the 
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invariant of the product of two tensors ca, cb and y o  = 3(1 - a) / ( l  + a) is the Eshelby 
constant. 

This interaction r compares quite well with the experimental values at first sight. A 
close inspection however shows that the range of the interaction constant does not 
completely cover the measured values for reasonable elastic constants K and a of 
these compounds (Willenbacher et aZl988). In order to complete the theory of elastic 
interaction and hopefully improve the agreement with the experimental values the 
calculation of the direct interaction between the dipoles has become necessary. 

The separation of the interaction in an image part resulting from a stress-free 
boundary and a direct part which is calculated summing over all pairs of dipoles em- 
bedded in a boundary-free infinite medium is a separation in a long (infinite) range and 
a ‘short’ range (R-3)  part. The long-range behaviour of the image pressure does not give 
rise to clustering effects on the microscopic scale. Therefore it is the average dipole 
tensor which enters the equations of the elastic energy of the crystal. From Mossbauer, 
susceptibility, or x-ray measurements there is indeed no hint at such clustering for the 
compounds under consideration. For the calculation of the short range part of the 
interaction in this paper we assume that the random distribution of defects is preserved 
by this interaction. We start with the elastic energy expression (Shuey et a1 1969) of two 
arbitrary dipole defects Pa and P b  in an infinite medium separated by the distance R. 
One lies on the origin of the coordinate system and the second on the z axes at z = R 
ELt = (1/4nR3)[1/(A + 2p)]{%%(PWPk + P b P t )  + [(4p + 3A)/p]P$Pb 

- (2p + 3A)/2p(PtPtx + P”Pb_;) - ( P ! P i *  + P”Pb-;>}. (1.5) 
This equation will be generalised for arbitrary positions of the second defect in 0 2. Then 
the summation procedure used for a computer calculation will be described in Q 3. The 
deformation tensors as obtained from x-ray measurements are taken from our previous 
paper. In § 4 it is shown that all components of the dipole tensor difference PHL of the 
complex molecule [ F e ( 2 - ~ i c ) ~ ] ~ +  can be unequivocally determined from the deformation 
tensors of the two compounds under consideration so that the direct interaction can be 
calculated as a function of the elastic constants. The total interaction constant r and the 
energy shift A which can also be estimated are compared with experimental results in 
3 5 .  

2. Elastic energy of point defects in an infinite medium 

In order to generalise the geometrical situation of the defects leading to (1.5) we change 
the coordinate system from system S ’  to system S.  The vector R = Re,, points from 
defect (a) located at the origin to defect (b). With respect to the coordinate system S 
which is rotated by the Euler angles p = (a, /3, y )  onto the system S ’  the dipole tensor 
components P h  are expressed in terms of PM by means of the Wigner rotation matrix, 
P A  = C P M D & N ( p ) ,  so that (1.5) reads 
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Using the expansion series of the product of two Wigner rotation matrices, the inter- 
action energy is finally written as 

M MM' 

= PaV(R)P: + P;V(R) + Pb+ + PaW(R)Pb+ (2.2) 

(2.3a) 

(2.3b) 

The tensors V(R) L, W(R) LM8 and W(R) LM, are independent of the elastic constants 
A and ,U 

The Y(R)kM are the spherical harmonics. The interaction does not depend on an inver- 
sion of the direction of R (interchanging defects a and b). This behaviour is guaranteed 
by the even k-values of the spherical harmonics. The rotation around the z '  axes by the 
Euler angle y does also not change the interaction energy. The spherical harmonics 
depend only on the angle LY and p. 

Hirsekorn and Siems (1981) gave general formulae for the interaction of point defects 
at positions r and r' in an infinite medium (equation (3.11) therein) and the image 
interaction in a finite medium of spherical shape (equation (4.18)). We were not able to 
reduce their general equation (3.11) to the special equation (1.5) given by Shuey and 
Beyeler (1969), which has been confirmed. Their equation (4.18) can be used to integrate 
the image interaction of arbitrary defects homogeneously distributed over a sphere, the 
situation considered in our previous paper (Willenbacher and Spiering 1988). The result 
is identical with that independently derived by us without use of the advanced tools of 
elasticity theory (up to that time we did not know the paper of Hirsekorn and Siems). 

3. The lattice sum 

The sum of the interaction energies between all pairs of lattice sites is carried out 
assuming a random distribution of the different types of defects over the lattice sites of 
the metal atoms. The following sum has to be evaluated: 

This double sum will be carried out in such a way that the average dipole tensors Pi at 
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the n sites in the unit cell can be introduced in (3.1). The indices a ,  b are replaced by 
pairs U ,  i and U ,  j ,  where U, U count the unit cells and i, j = 1, . . . , n the sites within the 
unit cells. R is a vector pointing from site i of unit cell U to site j of cell U. The dipole 
tensors of the defects at these sites are Pui and P'j respectively. Then the double sum can 
be arranged as: 

We consider first vectors between different unit cells U # U and fixed i ,  j. The sum U, U 
can be rearranged using the translational symmetry of the lattice. Vectors between unit 
cells U '  and U' the positions of which differ from the cells U and U by the same translation 
vector of the lattice shall be denoted R $ where the index z counts all translation vectors. 
The index t is unequivocally determined by U and U: z = z(u,  U )  and also vice versa U 
by t and U: U = ~ ( t ,  U). In order to have not so long formulae we consider one of the 
terms of (3.2) exemplarily. Substituting (2.2) the W term of the first term of (3.2) is given 
by 

n 

E&,, = $2 2 P''W(R$)Pujt 
u i u  i , j  

(3.3) 

Here we made use of the fact that the tensor W does not depend on the absolute position 
U, i and U ,  j of the defects. The double sum will be rearranged by a sum over three indices 
a ,  U,, and t. The sum over U, U is replaced by U, t and U is further split into a ,  U, so that 
P"ej denotes one of the tensors of type a = HS, LS and M and can be taken out of the 
sum over U,. If cru is the concentration of a-complexes U, runs from 1 to N/nc". 

The sum U, can be carried out since all types of defects are met at site ~ ( z ,  U,), j. 
According to their random distribution we obtain the average tensor Pi at site jmultiplied 
by N/nca. The sum LY of the three types of defects gives again the average tensor 
2, c"Puei = Pi so that 

n 

The other terms of (3.2) are treated in the same manner. In the case of the second term 
E:,,,,, of (3.2) the sum over all unit cells U again gives the factor N/n and the tensors are 
replaced by their average values. 

The sum over z and j in (3.5) can be looked at as the negative of the strain field E' at 
lattice site i so that the average energy E"'of a dipole tensor P"' at site U, i has the familiar 
form E"' = --PuleL. The calculation of the E '  for the finite spherical crystal embedded in 
an infinite medium is carried out in two steps. First E'  is summed up over a small 
sphere of radius Re taking into account the crystal structure of the compound under 
consideration. This sum converges as a result of the angular dependence of the V and 
W terms which are proportional to the spherical harmonics. At sufficiently large distance 
R the number of points on a spherical surface becomes so large that the sum can be 
replaced by an integral Jd  Q which vanishes integrating over the spherical harmonics 
with k > 0. Outside R ,  the vector R $ is almost independent of i and j and we replace the 
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summation by an integration so that the strain field at site (U, i )  in the spherical crystal 
is a sum of ei(VE) which is independent of U and the integral 

(3.6) 

which depends on the position (U, i )  in the crystal. It will be shown in the appendix that 
this integral vanishes independently of the position (U, i )  and the radius R E .  

For the calculation of E'( V,) the symmetry of the compounds under consideration is 
taken into account. The n sites of the unit cell are equivalent and the average tensors at 
different sites are related to each other by a transformation T L M , .  Starting with site 1 
we can write: 

(3.7) p'  - PL,TR,, pg = p i  P I  = PlT21. 
M -  

M' 

With these relations the direct interaction is finally given by: 

Edl rec t  = N(P'VcPi + P'WCP") (3.8) 
n n 

(3.9a) 1 11 
V, = 5; [ [T2jV(R f )  + T2'V(R!)] + T2'V(R 8,) 

T i,] i # j  

(3.9b) 

The total tensors V, and W, of the lattice are determined by the crystallographic structure 
and the elastic constants of the compounds. For practical calculations the lattice sums 
of the tensors of (2.4) are carried out. 

The interaction parameters T(x) and A(x) are obtained by inserting the average 
tensor of (1.4) into the expression of Edirect. The average tensor element Pais  expressed 
by the tensor differences PgL = Pvs - PLs , and P$L = Py - P"," so that P , =  
xyPzL - xPFL + Pfii, a = s, M .  This tensor shall belong to site 1 whereby the index 1 
is dropped. Collecting only terms dependent on the fraction y the interaction energy per 
iron complex Edirect/Nx can be written in the form of (1.1) with T(x) = xrd, A(x) = xAd 
and: 

r d  = -(pHLVcpyL + pHLWcPHL+) (3. loa) 

A d  = -(PHLV,PyL + PMLV,PrL + PHLWcPML+ + PbILW c PHL+ 1. (3. lob)  

The average dipole tensor at each lattice site cannot be completely evaluated 
from experiment. The tensor components obtained experimentally from the average 
deformation tensor E, according to (1.2) are those that are invariant with respect to the 
transformations T21 (i  = 1 , 2 ,  . . ., n).  Therefore several tensor components remain as 
hidden variables for the calculation of the direct interaction. 

4. Results 

4.1. The elastic dipole tensor 

The symmetry of the crystals under consideration is monoclinic for the compound 
[Fe (2 -~ ic )~ ]Cl~  - EtOH and orthorhombic for [Fe (2 -~ ic )~ ]Cl~  * MeOH. In the following 
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sections the compounds will be abbreviated by their solvent molecules EtOH and 
MeOH, respectively. Corresponding to symmetry only a few linear combinations of 
the components Pw of the dipole tensor of the complexes can be derived from the 
macroscopic deformation of the crystal described by the tensor E , .  These are the trace 
P,, Po and the real linear combinations P2, = (1/d2)(P22 + P2,-2), PI, = (1/d2)  
(P21 - Pz,-l) for the monoclinic crystal and P,, Po and P2, for the orthorhombic 
crystal. The linear combinations PI, = (i/d2)(P21 - P2,-1) and Pz, = - ( i /q2)  
(P22 - P2, - 2 )  are hidden parameters for the monoclinic crystal and Pic, PI, and P,, for 
the orthorhombic crystal. In order to reduce the number of unknown parameters we 
have made the rigorous assumption that the shape of the complex and especially the 
change of the shape on going from the HS to the LS state is independent of the lattice they 
are built in. The displacement field U(r )  produced by the change of spin state of the 
complex embedded in an infinite medium has the form (Shuey et a1 1969) 

The YJ", are the vector spherical harmonics. In the approximation of a homogeneous 
lattice the displacement field U(r )  describes for example the change of the nitrogen 
positions rN in the complex molecule. According to (4.1) equal displacements U(rN) 
result in the same dipole tensor P if the elastic constants are identical in the two 
compounds. The proportionality of A and p with the bulk modulus Kleads to the weaker 
conclusion that P/K is preserved if the Poisson ratio a or equivalently the Eshelby 
constant ( y o  = 3(1 - a)/(1 + a) )  is the same for the different compounds andviceversa. 

For the EtOH and MeOH compounds the parameters are as follows. The volume 
change E:: - V ,  given in table 1 are the same so that for these two compounds which 
have different crystallographic structures the ratio PFL/K = E:: - V ,  (according to 
(1.2)) is also the same. With the rigorous assumption above of the same local dis- 
placement U we conclude the Eshelby constants of both compounds to be the same too: 
yFtoH = yYeoH. Since the orientations of the Fe complexes in both structures are 
different we can principally calculate, applying (1.2) to both crystals, the local tensor 
PHL/Kfrom the E FL tensors by the following system of linear equations ( M  = 2c, IC, 0, 
Is, 2s): 

The index i runs over all sites n in the unit cell. In order to solve this system the 
components of the tensors PHLxi/K in (4.2) related to the crystal system S ,  have to be 
expressed in a local coordinate system SI,, which is fixed to the complex molecule. If the 
Euler angles /3 rotate the system S, onto SI,, of site i = 1 the local tensor components 
are given by 

Inserting the transformation matrices T 2i of (3.8), which relate the equivalent lattice 
sites to site 1, (4.3) reads 

For the monoclinic structure two equations ( M  = Is, 2s) and for the orthorhombic 
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o U m i v l  
N - 0 - N  
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Figure 1. Configuration of the complex molecule 
[Fe(2-pic)J2+ and the local coordinate system S,,, 
which can be unequivocally fixed to the orien- 
tation of the three bidentate 2-amino- 
methylpyridine ligands of the central Fe2+ ion. 
The sizes of the atoms were chosen such that 
Fe > N >  C >  H. o,+ ON QC 

structure three equations ( M  = IC, Is, 2s) vanish identically so that just five equations 
are left to determine the local tensor components P:". The system Slot can be fixed at 
the iron complex unequivocally as indicated in figure 1. The z axis points from the iron 
atom to that amino nitrogen atom which is opposite to a pyridine nitrogen atom. The x 
axis connects two pyridine nitrogen atoms and points in the direction of the pyridine 
ring which is bonded to the amino group defining the z axis. Since the six nitrogen do 
not exactly form an octahedron the coordinate system is chosen such that s = 
2: cos2(al) becomes minimal where ~ t ;  is the angle between the direction from iron to 
nitrogen a tomj  and the corresponding coordinate axis. The crystallographic data of the 
compounds in the LS state were taken for the calculation. These are the data at 90 K of 
the EtOH compound (Mikami et a1 1980) and at 115 K of the MeOH compound (Katz 
et all979). The estimations of the Eshelby constant yo of these compounds based on the 
theory restricted to spherical defects (Adler et a1 1987) shall not be used. Therefore the 
tensor components P i L  divided by K ( y ,  - 1) are given in table 2 .  The components with 
respect to the crystal system S, belong to site i = 1 which has the fractional coordinates 
(x,y,z) in the unit cell as tabulated in Mikami et a1 (1980) and Katz et a1 (1979), 
respectively. 

4.2. The interaction 

In order to calculate the tensor components Vc,M, Wc,MM, of (3.7) the tensor W,is broken 
up into two tensors Wz and W %  and V, replaced by Vz which are independent of the 
elastic constants according to (2.3). If we denote PHL divided by K ( y ,  - 1) and P,/K by 
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1 .o 1.4 1.8 
'bo 

Figure 2. The interaction r divided by the bulk 
modulus K plotted versus the Eshelby parameter 
yo  for two compounds [ F e ( 2 - ~ i c ) ~ ] C 1 ~  . Sol (2-pic- 
2-aminomethylpyridine; Sol = MeOH, EtOH).  
(a )  MeOH compound, ( b )  EtOH compound. r/ 
K has been calculated from the x-ray data of the 
two compounds. The three curves for each com- 
pound show the different contributions included 
in the calculation: curve A takes into account the 
image pressure of the isotropic part of the dipole 
tensor (P,)  of the HS defects in the LS lattice; curve 
B includes the image pressure of the full dipole 
tensor; curve C represents the total elastic inter- 
action between the defects homogeneously dis- 
tributed over the lattice sites of the crystals having 
a spherical shape. 

the underlined symbols PHL and E , ,  respectively, then the direct interaction part rd and 
the energy shift Ad can be written as 

r d / K  = - [ ( yo  - l)/yO][eHLV:f',HL - * , (2y ,  - 1 ) p H L W p '  

+ +(yo  + 3)pHLW:pHLfI (4.5a) 

- $ ( 2 y 0  - l)(pMLW:pHL+ + - PHLW2PML+ c- 1 

A ~ / K  = - [ ( y o  - i ) / y O ] [ p M L ~ p : L  + pHLvzeYL 

+ $ ( Y o  + 3)(P MLW4pHL+ c- + - pHLW4pML+ c- 11. (4.5b) 

For the calculation of the tensors V:, Wz and W: sufficiently large lattice sums have 
to be performed. The convergence of the sums appears to be relatively slow. A change 
of 5% is still obtained if already lo4 lattice sites are included which corresponds to a 
radius of 110 A. The tensors were calculated up to a radius of 30 times the largest lattice 
constants b including more than lo6 defects. Figure 2 shows the different contributions 
to the interaction constant as calculated for the EtOH compound versus the unknown 
Eshelby constant yo. The first approach of Spiering et a1 (1982) considered only the 
spherical part of the defect P, which does not contribute to the direct interaction. The 
total image part rim/K was calculated in our last work (Willenbacher et a1 1988). The 
complete interaction T / K  = Tim/K + r,/Kincludes the direct part which turns out to be 
a considerable contribution (about 30% of r). 
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Figure3. The dependenceof theinteractionon the 
orientation of the dipole tensor PHL with respect 
to the lattice of the EtOH compound. The inter- 
action constants divided by the bulk modulus K 
are plotted versus a rotation angle a about an 
axis with polar angle p = 240" and 6 = 60" in the 
coordinate system S,,,. Curve A, total interaction; 

I I I , /  

5.  Discussion 

A straightforward comparison of the experimental with the calculated interaction con- 
stants T and the energy shifts A is not possible because there are no reliable data of the 
elastic properties of the compounds. Moreover, for the calculation of the energy shift A 
the dipole tensor PZnH describing the difference of the shapes of the Zn- and Hs-complex 
molecule could not be completely determined because of the missing crystallographic 
data of the Zn compound [ Z n ( 2 - ~ i c ) ~ ] C l ~  * MeOH. But the consistency of the different 
experimental results with the theory and with reasonable ranges of the unknown par- 
ameters shall be discussed in detail. To begin with several general facts will be stated. 

The curves of T / K  versus yo  in figure 2 calculated with the same defect tensor PHL 
obviously depend strongly on the symmetry of the crystal. Also the three contributions 
to r are different with respect to their relative size for different crystal symmetries. Tlm 
which depends on the spherical and the anisotropic tensor components of the defect, is 
always positive as can be read from ( 1 . 5 ~ ) .  rd, however, can also be negative. In figure 
3 the dependence of T,,/K and T / K  = T,,/K + Td/K on the orientation of the local 
tensor PHL in the EtOH crystal is demonstrated. The orientations are obtained by 
rotating (a = 0", . , , , 360") the local tensor about an axis with polar angles cp = 240" 
and 6 = 60" in the local system. The Eshelby constant has been fixed to yo = 1.5. Two 
facts are of importance, the total interaction constant T / K  varies over a large range 
between 0.1 and 0.5 A3 and there are regions where T / K  is smaller than Tim/K so that 
the direct contribution rd/Kis a negative one. This strong dependence on the orientation 
of the defect in the lattice and on the symmetry of the lattice provides an easy explanation 
for the range of interaction constants so far observed. The interaction may be large, in 
which case hysteresis is observed, or almost vanishing in another lattice as is the case 
for the [Fe(2-pic),] complex in [Fe(2-~ic)~]Br,-  EtOH (Wiehl et a1 1987) and in 
[Fe(2-~ic) , ] (PF~)~ (Adler et a1 1989), respectively. So we can in fact state that the 
interaction in HS e LS transitions can naturally be attributed to the elastic interaction 
between the spin changing ions. 

In order to perform a more detailed comparison with the experimental interaction 
constants the value of TEtoH shall be reevaluated. The knownvalue of 130 cm-' (Spiering 
et a1 1982) was determined from the Mossbauer data of Sorai et a1 (1976) which do not 
show the characteristic step in the transition curve as was later found by Koppen et a1 
(1982). The step turned out to be sensitive to the preparation procedure and mechanical 
treatment of the compound. Only samples which were not ground developed the full 
width of the step. 
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Figure 4. The derivative of the interaction part 
of the free enthalpy dC,,,/d y = A - 2yT of the 
compound [Fe(2-pi~)~]CI,  E t O H  versus the HS 
fraction y. The step in the transition curve y(T)  
gives rise to shift of the derivative in the transition 
region. The slope below and above the step is the 
same and determines the interaction constant to 
be r = 175 cm-'. 
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Figure 5. (a) The ratio of the theoretical values 
(T/K)EtoHand (T/K)MeoHplottedin figure2 multi- 
plied by the ratio of the experimental interaction 
constants rMeoH and rEtoH is equal to the ratio 
of the bulk moduli, KMeoH/KEtoH. (b )  KEtoH 
obtained from the ratio of the experimental value 
of r = 175 cm-' divided by the theoretical values 
(r/K)EtoH. (c) The Debye temperature OD as cal- 
culated from KEtoH and yo (see text). 

The interaction constant r and the energy shift A is evaluated as published elsewhere 
(Adler et al 1987). The derivative of the interaction part dGinr/dy = A - 2 r y  of (1.1) 
can be directly obtained from the transition curve y ( T )  by use of the data of 
the highly diluted compound (x+ 0) where the interaction term vanishes. The free 
energy G(x+ 0, T )  is determined by the free energies of the HS and LS state in the 
lattice, GHS and GLS, respectively, and by the mixing entropy S,,,(y) = 
-kB[yln y -k ( l  - y)ln(l - r>l 

G(x+ 0, T )  = yGHS + (1 - y)GLS - TS,,,. (4.6) 
Application of the equilibrium condition aG/ay = 0 leads to (GHS(T) - GLs(T)) = 
kBT. ln[(l - y)/y] which was measured by the HS fraction y ( T )  in the highly diluted 
compound [FexZnl-x(2-pic)3]C1, EtOH (x = 0.009). The experimental values of 
(GHS - GLs) were parametrised by an analytical function having the form of a free 
energy containing partition functions with different electronic and vibrational energies 
for the HS and LS states (Spiering et al 1982). Including the interaction term for x = 1 in 
(4.6) of the free energy the equilibrium condition changes to: 

0 = (GHS - GLs ) - kBTln[(l - Y)/YI + dGint/dy (4.7) 

where the HS fraction y(T) is measured on the pure iron (x = 1) compound. In figure 4 
d Gint/d y is plotted versus y( T )  which are taken from the work of Koppen (Koppen et 
a1 1982). For a normal HS e LS transition we expect a linear behaviour according to 
dG,,,/dy = A - 2yT. Here we have the linearity below and above the step in the 
transition curve. The step causes a parallel shift leading to different intercepts A above 
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(A = 300 cm-') and below (A = 275 cm-') the step. From the slope an interaction of 
T = 175 cm-' can be determined. The origin of the step is not yet clear, but it is known 
that only a small change of the bulk modulus of 2% (i.e. by changes of the lattice) 
will cause changes of A of -30 cm-' (Sanner et a1 1984). We take the branch in the 
temperature range below 120 K where all other results have been derived. This part is 
correctly described by the free energy with T = 175 cm-' and A = 275 cm-'. 

The theoretical values for T / K  could be derived assuming the same Eshelby constant 
y o  for both the EtOH and MeOH compounds, a condition which has to be shown to be 
consistent with the experimental data. The three curves in figure 5 shall prove this 
consistency. The lower curve represents the y o  dependence of the ratio of the theoretical 
values (T/K)EtoH/(T/K)MeoH of the total interaction (upper curves in figure 2) multiplied 
by the ratio of the experimental interactionconstantsTMeoH/TEtoH = 98 cm-'/175 cm-' = 
0.56. This expression is equal to the ratio of the bulk moduli of the two compounds: 
KMeoH/KEtoH. The bulk modulus KEtoH of the EtOH compound (second curve in figure 
5) is obtained from the ratio of the experimental interaction constant T = 175 cm-' 
divided by the theoretical values (T/K)EtoH. The upper curve in figure 5 is a plot of the 
Debye temperature OFoH versus yo calculated from KEtoH according to the equation 
(Meissner et a1 1987) 

where N / V  is the number of vibrating masses per volume and p the density of the 
compound. As there are no direct measurements of the elastic constants of these 
compounds or similar ones, we will make use of the Debye temperatures OD deduced 
from the Mossbauer Debye-Waller factor to prove the consistency of the data. 

An estimation of Kand yo of the deuterated compound [Fe(2-pi~-ND,)~]Cl~ EtOD 
was obtained from the temperature and pressure dependence of the Mossbauer Debye- 
Waller factorfin the frame of the Debye approximation and simple Gruneisen relations 
for the volume dependence of the Debye temperature OD (Meissner et al 1987). At 
low temperatures (115 K) a bulk modulus of K = 1.4 x lolo Nm-2 and yo = 1.25 was 
evaluated. Consistency of the data was achieved if the recoil mass Jlil had been taken as 
the mass of the Fe complex plus the C1- anions. This result was argued to be reasonable 
from the structure of the compound which forms a lattice of [Fe(2-pic-ND2),I2+ com- 
plexes and C1- anions connected by hydrogen bridges. The ethanol molecules are bound 
to one of the C1- anions by an OH- group and move independently in a lattice cage. A 
Debye temperature OD = 56 K at 115 K was derived with these arguments. For the 
MeOH compound Adler et a1 (1987) reported OD = 48 K calculated from the absolute 
value of the Mossbauerf-factor at room temperature taking, again the mass of [Fe(2- 
~ i c ) ~ ] C l ,  as the recoil mass d. If the same increase of 13% in OD from 300 K to 120 K 
found in the deuterated compound is assumed, a value of OPoH(120 K) = 54.5 K has 
to be used. A value for the low temperature region can be directly obtained from 
Mossbauer factor f (  7') of the isomorphous mixed crystal [Feo,olZno.99(2- 
p i ~ ) ~ ] C l ~ .  EtOH studied by Koppen (Koppen 1985). OD is reliably estimated from the 
slope of -lnf( T )  = [3E',/(k,czJlilO',)]7' (high-temperature approximation of 
f ( T  S OD) with E, = 14.4 eV the energy of the 57Fe Mossbauer transition and c the 
velocity of light) since there are no extra changes of OD in the diluted compound by a 
decreasing volume accompanying the HS-+ LS transition. In figure 6, -ln(f) is plotted 
against T.  From the slope of the straight line fitting to the data around 120 K a Debye 
temperature of OD = 53 K is determined which is almost the same as 0 P O H .  
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Figure6. The negative logarithm of the Mossbauer Debye- 
Waller factor, -hf, of the mixed-crystal compound 
[Feo o,Zno.9s(2-pic),]C1, . EtOH versus temperature T. 
From the slope at 120K (straight line) the Debye tem- 
perature OD = 53 K is evaluated at that temperature. 

First we can state that, as the bulk modulus is proportional to the square of OD 
(equation (4.8)), the range of the ratios of the bulk moduli 0.93 < KMeoH/KEtoH < 1.1 
certainly covers the true value and therefore does not conflict with equal Eshelby 
constants y o  for both compounds. The values of the bulk moduli KEtoH predicted from 
the interaction r range from 2.9 x 10"N mP2 at y o  = 1.1 to 0.51 x 10lON m-' at yo = 
2.0. Within this range lies K = 1.4 X lo1' N m-' determined from Mossbauer measure- 
ments for the deuterated EtOD compound. We can also compare with measured elastic 
constants of organic crystals which consist also of ring molecules like pyridine. The K- 
value of 0.45 x lo1' N m-' calculated from the elastic compliances (Landolt-Bornstein 
1969) at 250 K of benzene which is liquid at ambient temperature, can be considered as 
a lower limit for this type of compound. This limit almost agrees with the smallest 
predicted KEtoHvalue at y o  = 2.0. Translating the bulk moduli and Eshelby constants 
to a Debye temperature the range 55 K < 0 zoH < 63 K (upper curve of figure 5 )  is very 
narrow and compares well with the values estimated from the Mossbauer Debye- 
Waller factors. The different interaction constant of the two compounds obviously 
can be calculated with the same elastic dipole tensor, the same Eshelby constant yo of 
the crystal, and quite reasonable values for the bulk moduli. The true value of y o ,  
however, is not known. Nevertheless we arrived at a consistent description of the elastic 
interaction of the HS-LS compounds under discussion. Although many approximations 
are still involved in the theory of the isotropy of the elastic properties and spherical 
shapes of the crystals we consider this result as satisfactory. 

A further parameter which has been predicted theoretically is the ratio q = A/(2r). 
The ratio is independent of the concentration x of spin-changing ions in a mixed-crystal- 
system and independent of the bulk modulus K.  It depends according to (4.6) only on 
the tensors PHL and PML and the Eshelby constant yo.  PML is obtained from the defor- 
mation tensor E y" = E yH - E ,"". In table 1 the tensor components E 2" (M = Zn) of 
the EtOH compound are given as derived from x-ray data (Wiehl 1987). Since the 
corresponding tensor of the MeOH compound is not available the components E:,"" 
and E?" remain hidden parameters. We can, however, guess reliable ranges of the 
hidden parameters of the EtOH compound using the fact that the measured tensor 
components (2c, IC, and 0) of the HS and Zn complex are not very different; in particular 
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their signs are the same (see table 1). Therefore limiting the range of these components 
by 1 E?:" 1 < (_PEL 1 and preserving equal signs can be considered as a reasonable assump- 
tion. Then the calculated ratios vary within very narrow limits 0.80 < q < 0.82 for 
1.1 < yo  < 2 and are close to the measured value of q = 275 cm-'/(2 x 175 cm-') = 
0.79. This agreement can be taken as a parameter-free theoretical result. 

For the MeOH compound the situation is different. Transforming the tensor to the 
system SpoH the limits differ considerably: 0.63 < q < 0.86. A definite prediction is 
achieved as follows. The hidden tensor components ez:" (m = Is, 2s) in the EtOH 
system are guessed to be smaller by the same percentage (in average) than the cor- 
responding P::" as is the case for the larger components m = 2, IC, 0. These reduced 
components are given in table 1. The components are transformed to the local- and the 
MeOH systems and are also tabulated. The fact that all e?:" components are smaller 
than the EEL components is preserved in the local system. For this choice the limits of q 
are 0.77 < q < 0.81, fitting well to the experimental value of q = 0.80 (Adler eta1 1987). 
We state that the ratio q or equivalently the energy shift A is also well explained by the 
elastic interaction between the HS and LS and metal complexes in mixed-crystal systems. 

5. Conclusion 

We have presented a theory for those HS S LS transitions which are described by a 
phenomenological Gibbs free energy containing the interaction term G,,, = 
yA(x) - y2r(x) of (1.1). The so called gradual transitions in mixed crystals with a 
concentration 0 < x < 1 of the spin-changing ions have been successfully parametrised 
by such a phenomenological ansatz. The theory allows to calculate the energy shift A(x) 
and the interaction constant T(x) from the crystallographic data and the elastic constants 
of the lattice. The theory uses simplifications in many respects but it is the first attempt 
to a quantitative understanding of the phenomenological parameter and appropriate to 
serve as a frame for future studies in the wide field of HS S LS phenomena. So far there 
have been numerous suppositions and speculations on the origin of the cooperativity of 
the transition. The suppositions changed from compound to compound and never led 
to definite predictions which were suited to prove or disprove them. Concerning the 
structural changes accompanying the spin-state transitions the various experimental 
observations and suppositions about their relation to the HS f LS transition have been 
reviewed in great detail by Konig (Konig 1987). Over several years Kambara and co- 
workers (Kambara 1979,1980,1981, Ogata et al 1983) worked out acompletely different 
theory which certainly does not cover several experimental facts (Koppen et a1 1988). 
They treated the spin-changing complex in the framework of ligand-field theory and 
introduced a Jahn-Teller type of coupling between them to account for the coop- 
erativity. The essential problem namely the size of the interaction and its variation from 
compound to compound has not been treated by them. Beyond that their approximations 
contradict well established experimental results. In the framework of ligand-field theory 
a continuous variation of the isotropic strain (Alg) of the ligands also changes the 
electronic energy separation between the HS and LS states continuously. From x-ray data 
(Konig 1987) and optical spectroscopy (Hauser et a1 1986), however, it is known that the 
ligands have definite positions in the HS and LS states separated by a potential barrier so 
that the electronic energy separation does neither depend on x nor on the HS fraction y .  
This fact was the starting point of our theory. We neglect completely the Jahn-Teller 
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coupling and take the whole shape of the complex as rigid in the two spin states. The HS, 
LS, and other metal complex molecules with their different but distinct shapes, which fit 
more or less to the crystal structure, are treated as defects. Each metal site of the crystal 
represents the position of a defect. In the theory the defects are treated as a point defect 
characterised by a second-rank tensor, the orientation of which is the same for lattice 
sites related by translational symmetry. The complete elastic interaction between the 
defects which are randomly distributed over the lattice sites has been calculated in this 
paper for the two compounds [Fe (2 -~ ic )~ ]Cl~  EtOH and [Fe(2-pi~)~]Cl,  MeOH. The 
fact that the compounds have different structures and therefore different defect orien- 
tations in the unit cells turns out to be the reason for the very different interaction 
constants observed. The consistency of all experimental data in the frame of this theory 
encourages us to do work on other examples, especially on compounds which show 
abrupt transitions and those with hysteresis effects. It is well known that the phenom- 
enological ansatz for the Gibbs free energy produces first-order transitions with hys- 
teresis if the interaction constant r is sufficiently large (Drickamer et aZ1973). 

The severe simplifications in the theory are twofold: the lattice is approximated by a 
homogeneous isotropic elastic medium although the compounds have monoclinic and 
orthorhombic symmetry and the shape of the crystals is taken to be a sphere. In par- 
ticular, the spherical shape that leads to an interaction constant which is independent of 
position in the crystal, simplifies the free-energy considerably. Extension of the theory 
to low-symmetry elastic media and crystals of arbitrary shape is difficult and can only 
be done by extensive numerical calculations. Such calculations may be justified if the 
complete set of elastic constants of the compounds are available. Another simplification 
concerns the elastic constants which are taken to be independent of temperature and of 
the volume of the crystal changing with the HS fraction y. We believe, however, that 
these simplifications will not destroy the overall consistency of the picture obtained for 
the two examples discussed. 
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Appendix 

The integrals Jv,-v, dV, W(R,)  and dV, V(R, )  have to be evaluated. Accord- 
ing to (2.4) we have only to consider the spherical harmonics Y2,(Q,) and Y,,(Q,) 
divided by R:. The coordinates of R,(R,, QT) are with respect to a coordinate system S, 
fixed at the centre of the sphere VE(RE) and S is fixed at the centre of the sphere V,(R,). 
The system S is shifted to S, by the vector RU (RU + RE G R,) and the z axes are chosen 
to be parallel so that we have rotational symmetry around the z axis. The volume 
integrals can be written as surface integrals by use of the divergence differential operator 
applied to the vector spherical harmonics 

(l/R:)YLM(Qz) = - w / L [ l / ( L  + l ) ]  div((1/R’,)Yk1(Q2,)). (AI)  
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Using Gauss's law we obtain 

Sa and SE are the surfaces of the spheres V ,  and V,, respectively. The axial symmetry 
immediately leads to ILM = 0 for M # 0 for both surfaces. Obviously ZL0 ( L  > 0) vanishes 
on S,.  On Sa the integrals I,, and I,, have been calculated explicitly. They vanish 
independently of the relative values of R, and R". 
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